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for four values of K/P. Three of these values correspond

to s < 1.3, and the corresponding values of P.(L) lie

close to both the (/ !f’Iz) and ~~(0) curves. The fourth

VahIe Of %K/@i S 3 (for which ~is not very small), which

corresponds to s = 11.4, and lies outside the range of s

in Fig. 1.

Since the above experimental values give only one

comparison point ‘in the region in which W.(0) and

(1 T 1’) are not close, Marcuse [10], at the request of the

author, carried out some more computer simulated ex-

periments in the case N = 500. The additional points are

indicated by circles in Fig. 1. The values for s = 8.37 and

s = 9.12 were obtained by averaging over 40 waveguides,

rather than 10, because of the large scatter for these values

of .s. The experimental values tend to confirm the validity

of the asymptotic value (I T ]2) of the average output

power, given by (51), subject to (12) and (50). We

emphasize that the asymptotic result holds for quite

general weak zero-mean wide sense stationary coupling.

Also depicted in Fig. 1 is the quantity (1 T 1-2)-l.
From (21) and (22), note that I T ]–2 is the value of the

input power I a(L) 12, when the output power I a(0) 12

is unity. From (50), (52), and (55), it follows that

~] T [-2)-1 = 2

(1 + e2’) ‘
(58)

Although. (1 T [-2)-’ has the same initial slope as (1 T 12),

it is seen that it decreases

increasing s.
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very much more rapidly with
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Ridged Circular Waveguide

YIH SHIAU AND RICHARD F. H. YANG,

A&stract—Characteristics of wave propagation

FELLow, IEEE

inside a ridged

circular waveguide are studied. The waveguide is a hollow, con-

ducting circular cylinder with a pair of semicircular conducting

ridges diametrically attached to its inside wall. Results of a per-

turbation analysis suggest that in this device a lower attenuation

and a wider bandwidth than those of a conventional circular wave-

guide can be achieved. Certain numerical results are graphically

presented.

INTRODUCTION

lt has been found experimentally that, in a seam-weld circular
waveguide, the polarization of the dominant TEII wave or the orien-
tation of the line joining the two E. maxima wanders, and the wave
has a great tendency to orient its ,?7, maximum along the seam
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ridges [1]. Further experimentation indicated that this tendency
was pronounced for a thick seam or with a seam intended inward
to forma semicircular ridge. In this study, an analysis is made of the
characteristic of wave propagation in a hollow, conducting circular
cylinder with a pair of semicircular conducting longitudinal ridges

diametrically attached to its inside wall.

To solve this problem as an exact boundary-value problem, the
process is long and quite complicated. Instead, a formulation based

on perturbation theory is used. The result is expected to be quite
good for small ridges with smooth cross sections.

CUTOFF FREQUENCY

Let us consider a ridged circular waveguide with its longitudinal
axis in the z direction of a cylindrical coordinate system. The sym-
metric ridge-pair assumed to have a semicircular cross section is
shown in Fig. 1, where 0 is defined as the angle between the longitu-
dinal plane bisecting the ridge-pair (ridge-pair plane) and the
longitudinal plane containing the two E, maxima (polarization).

The ridged circular waveguide may be considered as a smooth
waveguide with its boundary wall perturbed by a symmetric ridge-
pair along the longitudinal direction. It is well known that the time

average of stored magnetic and electric energies are equal in a wave-
guide at cutoff frequency. A small deformation in the waveguide

wall will cause an unbalance in these energies. Therefore, the cutoff
frequency will have to shift by an amouut necessary to reequalize



SHORT PAPERS 131

l--e
\/

h/ 7

RADIuS r

Fig. 1. The cross section of a ridged circular waveguide.

these energies. According to an approximate relationship, the fre-

quency shift is given by [2]

fc–fO _
fo //

[Wo[’ – @012] ds
/!!

[PIH012 + @ol’1 ds. (1)

A.9 s

In this expression, AIS and Sare, respectively, the cross sections of
the ridge-pair and the smooth waveguide; ~ and c are the permeability y

and permittivity; EO and HO are the electric and magnetic fields in

the waveguide with the,ridge-pair being removed; f. and f~ are,
respectively, the cutoff frequencies with and without the ridge-pair.

In evaluating (l), Atlcanbe further approximated byanequal area

trapezoidal sector as shown by the dotted lines in Fig. 1. The cri-

terionusedhere is to choose avalueof normalized ridge radius r/a
such that the following two conditions are satisfied:

rz = +O(az – b2) (2/T) a—b=a$o (2)

where a is the radius of the ridged waveguide and @Ois the half-angle

subtended bythesector in radians. As an example, theenergy in the

volume occupied bya ridge of radiusr = 0.214a is approximated by
theenergy inasectorwith~~ = 0.2radand b/a = 0.8. Substitution

of the field solutions of EO and HO into (1) yields an approximate
normalized cutoff frequency of TMOI mode

~
fo

= 1 +0.985 [@, (b/a) JO(X,)J, (Xl)] (2)

where Xl = 2.405 (b/a) and J%(X) is the nth order Bessel function
of the first kind. Similarly, the cutoff frequency of the dominan”t
TE,, mode for O = 90 °is obtained as

fc
–=1+0.79z5 (@o[x,~o(x,)~I (x,) –J12(32)I
fo

+ : sin (240) [.J02 (X2) + JO(X2)J1 (X2) – 0.441) (4)

where X2 = 1..84(b/a). For @ = 0° and o = 45°, the normalized
cutoff frequencies of TEII mode are, respectively,

&_
fo

– 1 + 0.7925 (@o[X2Jo (XJTI (X2) – J,’ (X,)]

— * sin (24.) [JOZ(Xz) + JO (Xa)Jl (X.J — 0.44]), (e = 0“) (5)

&_
fo

– 1 + 0.7925 (q$,[x,~o (X,)J, (X,) – J,’ (X2) ]) , (e = 45”).

(6)

In these expressions, the cutoff frequencies are in terms of the

sector parameters ~o and (b/a). By using the relations (2), the
cutoff frequencies versus ridge radius (r/a ) are calculated.

For @= 0°, the cutoff frequency of a TEII wave decreases with
increasing ridge radius r. For o = 90° and o = 45°, the converse is
true. The cutoff frequency of TMol mode also increases as r increases,
but is not a function of 6, because of its circular mode symmetry.
These results are plotted in Fig. 2. In a ridged circular waveguide,

Fig. 2.
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Normalized cutoff frequency of ridged circular waveguide.

the cutoff frequency is decreased for the dominant TE,, mode with

@ = O, and is increased for the next lowest cutoff TMo1 mode. There-
fore, the useful frequency bandwidth of a ridged circular waveguide

is wider than that of a smooth waveguide.

WAVE GUIDE AWtiUA~ION

The attenuation constant of a waveguide is given by the following
expression [3]:

a‘R’f’H’’2’’/2J/’ExH*’”ds‘7)
s

In this expression, RS is the surface resistance of the waveguide wall,
H, is the magnetic field tangential to the waveguide wall, and c is

the periphery of the waveguide cross section. General solution of the

above expression in terms of Bessel functions is somewhat compli-

cated. However, for certain specific cases of interest, the result can

be evaluated individually. Aesuming relations (2), the following

expressions are obtained for r = 0.21a:

[

7.31 x 1O-1W21[ 1
ffTM =

a [1 – ( fc/f ) ‘]’/’ 1 (8)

[ 1[RS 0.427 + 1.237( f,/f)2
~TE . —

aZo [1 – ( f,/f)’l’” 1 (9)

for 0 = 90° and

[ 1[RS 0.452 + 1.046( j./~) ‘
~TE . —

1
(lo)

Clzo [1 – ( fc/j) ‘]’/’

for 6’ = O“, where Z, = (~,/e,) ‘/2.
The attenuation factors as a function of frequency are ehown in

Fig. 3 for TE,, wave with o = O and TM,, wave. The losses for these

two modes of a smooth waveguide are also plotted in Fig. 3 for
comparison. Radii of ridged and smooth circular waveguides denoted

by a and a, are, respectively, chosen to be Q = 2.54 cm and a. =
2.49 cm, so that they have a same ctitoff frequency for the’TMOl

mode. ‘As shown in Fig. 3, the ridged waveguide has a lower loss for

the dominant TEki mode than that of the smooth circular w+veguide
in the normal operating frequency band.

In a ridged circular waveguide, wave attenuation also depends on

the orientation of the ridge:pair plane with respect to wave polariza-
tion. The at~enqation is minimum when ~ = 0° and becomes maxi-

mum when 6’ = 90°. This fact may explain why wave polarization
is most stable in the o = 0° orientation. The attenuation factors of
TE,, waves versus frequency for these two orientations are plotted
in Fig. 4 for comparison.
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Fig. 3. Attenuation of Tf3u and TMu waves versus frequency.
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Fig. 4. Comparison ofattenuation of TEuwavefor O =0 °anc18 = 90°.

CONCLUSION

The cutoff frequencies and attenuation of waves in a ridged cir-
cular waveguide are calculated. The results suggest that a ridged

circ@ar waveguide has a ‘lower loss and larger bandwidth than those

of a smooth circular wayeguide for the dominant TEI1 wave polarized
in ridge-pair plane in the normal operating band. Attenuation of

TEII wave in a ridged circular waveguide is minimum when the

waye is polarized in the ridge-pair plane (6 = 0°) and is maximum
when thewave ispolariped normal totheridge-pair plane (I9 = 90”).

Conclusions reached here are drawn from the calculations of a
formulation based onperturbation tlieory. The results do not hold
for large r/a, however. Since the exact field distribution within the
waveguide is unknowp, error can only be estimated. For design
purposes, however, the. err,orean reestimated forifixed~/a on the
basis of a comparison between (1) and the more exact solutions
~4],’ [5] for a rectangular waveguide with a same wall-deformation.
For example, the cutoff ’frequency-shift based on (1) is calculated

@ a rectangular waveguide with a rectangular longitudinal ridge

attriched in the’H plane with dimensions corresponding to r/a’=

0.275 in Fig. 2. The, result is then compared to that of Cohn’s work
[4]andap errqr is obtained. If this s?meerror isassumed for the

case of ridged circular guide, then the cutoff frequency-shift is
estimated to be within .0.65 percent for TEu mode and 0.77 percent
for TM,, mode. Fora circular ridge which is the cape in this study,
the result is expected to be somewhat better, because of the smooth-
ness of the wall-boundary, although a complete error analysis for
thewide range of r/ain I?igs. 2’-+ hasnotbeen carried out.
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Magnetostatic Surface Waves in Ferrite Slab Adjacentto

Semiconductor

MASAMITSU MASUDA, MEMBER, IEEE, NION S. CHANG,
MEMBER,IEEE, ANDYUKITOMATSUO

Abstracf—Magnetostatic surface waves propagating along the

ferrite slab adjacent to a semiconductor are discussed in this paper.

Our numerical results indicate that the” conductivity of the semi-

conductor plays an important role in the determination of the dis-

persion relation in the case of nondrifting carriers. The backward

wave appears for a finite value of the conductivity.

I. INTRODUCTION

Magnetostatic modes propagating along a ferromagnetic elab in

free space were firet examined by Damon and Eshbach [1] (DE

waves). “Applying a de magnetic field transverse to the direction of

the wave propagation, the surface wave which corresponds to the
@ = 90° spin wave is excited.’Thk wave is unique to the slab con-
figuration. Seshadri [2] considered the caee where a metal conductor

was placed on one face of the slab. Sucha grounded ferrite slab has
two different surface waves which propagate in opposite direction
toeachother. Both surface waves are forward modee. Subsequently,
Bongianni [3] discussed magnetostatic waves in the dielectric-
layered structure where the dielectric material was between aYIG
film and a perfect conductor. A backward wave appears at some

value of the thickness of the dielectric layer. On the other hand, the

general theory of the surface wave on a metallized ferrite film, includ-
ingdipolar, exchange, and conductivity effects, has been treated by

Wolfram and DeWames [4].
Our interest is not only in the behavior of the magnetostatic

waves but also in the wave interaction between the ferrite and the
semiconductor. It has been suggested that the solid-state traveling

wave amplifier (STWA) can be constructed with a layered structure
containing both materials [5 ]–[7 ]. A detailed understanding of the
coupling of the spin wave in ferrite and the carrier wave in semiconduc-
tor is important for the design of STWA. Preliminary to a discussion
of the amplification process, we deal in the present paper with the
magnetostatic surface waves propagating along a ferrite slab adja-
cent to a semiconductor. The finite conductivity of the semiconductor

gives us remarkable changes to the properties of the surface waves.

The dispersion relationship can be obtained by solving the boundary

value problem for three regions of ferrite, semiconductor, and free

space.

II. ANALYSIS

The geometry treated in this paper is a layered structure con-
stituted bv a ferrite slab and a semiconductor laver in free s~ace, as
shown in ‘Fig. 1. The external dc magnetic field is applied ‘parallel
to the y direction. The propagating directions of magnetostatic sur-
face waves and the carrier flow in the semiconductor are chosen to
be in the z direction. Our two-dimensional analysis is based on the
assumptions that the wave varies as exp j (cot — @z) and that all
properties are independent of ~ (~/dy = 0).

The field components in the semiconductor region, which is a
collision-dominated system for electrons, satisfy the following

equations:

VXH=J+joe8E (1)

VXE= –jwpOH (2)

VXE=ple, (3)

J = POV+ PVO (4)

v=,iis(E +vx Bo+vox B) (5)

Iwo 01 ~

/is= oLuo, fit = v/E, P. = av/dE (6)
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