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for four values of «/B. Three of these values correspond
to s < 1.3, and the corresponding values of P,(L) lie
close to both the (| T [?) and W.(0) curves. The fourth
value of 2r«/8 is 3 (for which e is not very small), which
corresponds to s = 11.4, and lies outside the range of s
in Fig. 1.

Since the above experimental values give only one -

comparison point in the region in which W,(0) and
(| T |?) are not close, Marcuse [10], at the request of the
author, carried out some more computer simulated ex-
periments in the case N = 500. The additional points are
indicated by circles in Fig. 1. The values for s = 8.37 and
s = 9.12 were obtained by averaging over 40 waveguides,
rather than 10, because of the large scatter for these values
of s. The experimental values tend to confirm the validity
of the asymptotic value (| T'|*) of the average output
power, given by (51), subject to (12) and (50). We
emphasize that the asymptotic result holds for quite
general weak zero-mean wide sense stationary coupling.

Also depicted in Fig. 1 is the quantity (| T [2)™.
From (21) and (22), note that | T |2 is the value of the
input power | a(L) [, when the output power | a(0) |2
is unity. From (50), (52), and (55), it follows that

(T[2)yt= REWSE

Although (| T [2)~! has the same initial slope as { T |?),

(58)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1974

it is seen that it decreases very much more rapidly with
increasing s.
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Short Papers

Ridged Circular Waveguide

YIH SHIAU anp RICHARD F. H. YANG, rELLOW, IEEE

Abstract—Characteristics of wave propagation inside a ridged
circular waveguide are studied. The waveguide is a hollow, con-
ducting circular cylinder with a pair of semicircular conducting
ridges diametrically attached to its inside wall. Results of a per-
turbation analysis suggest that in this device a lower attenuation
and a wider bandwidth than those of a conventional circular wave-
guide can be achieved. Certain numerical results are graphically
presented.

INTRODUCTION

It has been found experimentally that, in a seam-weld circular
waveguide, the polarization of the dominant TE;, wave or the orien-
tation of the line joining the two E, maxima wanders, and the wave
has a great tendency to orient its F, maximum along the seam
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ridges [1]. Further experimentation indicated that this tendency
was pronounced for a thick seam or with a seam intended inward
to form a semicircular ridge. In this study, an analysis is made of the
characteristic of wave propagation in a hollow, conducting circular
cylinder with a pair of semicircular conducting longitudinal ridges
diametrically attached to its inside wall.

To solve this problem as an exact boundary-value problem, the
process is long and quite complicated. Instead, a formulation based
on perturbation theory is used. The result is expected to be quite
good for small ridges with smooth cross sections.

Cutorr FrREQUENCY

Let us consider a ridged circular waveguide with its longitudinal
axis in the z direction of a cylindrical coordinate system. The sym-
metric ridge-pair assumed to have a semicircular cross section is
shown in Fig. 1, where 6 is defined as the angle between the longitu-
dinal plane bisecting the ridge-pair (ridge-pair plane) and the
longitudinal plane containing the two E, maxima (polarization).

The ridged circular waveguide may be considered as a smooth
waveguide with its boundary wall perturbed by a symmetric ridge-
pair along the longitudinal direction. It is well known that the time
average of stored magnetic and electric energies are equal in a wave-
guide at cutoff frequency. A small deformation in the waveguide
wall will cause an unbalance in these energies. Therefore, the cutoff
frequency will have to shift by an amouut necessary to reequalize
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Fig. 1. The cross section of a ridged circular waveguide.

these energlee Accordlng to an approximate relationship, the fre-
quency shift is given by 2]

ffo" - /f LulHol2 — el Eol2] ds// [M!H"lz + |Eol2lds. (1)
A8 . p

In this expression, AS and S are, respectively, the cross sections of
the ridge-pair and the smooth waveguide;uand e are the permeabﬂlty
and permittivity; By and H, are the electric and magnetic fields in
the waveguide with the ridge-pair being removed; f, and f; are,
respectively, the cutoff frequencies with and w1thout the ridge-pair.
In evaluating (1), AS can be further approximated by an equal area,
trapezoidal sector as shown by the dotted lines in"Fig. 1. The cri-
terion used here is to choose a value of normalized ridge radius r/a
such that the following two conditions are satlsﬁed

7% = ¢g(a? — b2) (2/x) a—b=agpo (2)
where a is the radius of the ridged waveguide and ¢, is the half—angle
subtended by the sector in radians. As an example, the energy in the
volume occupied by a ridge of radius r = 0.214a is approximated by
the energy in a sector with ¢o = 0.2 rad and b/a = 0.8. Substitution
of the field solutions of E, and H, into (1) ylelds an approximate
normalized cutoff frequency of TMg mode =~

;_c =1+ 0.985[ 0 (b/a)Jo(X1)J1(X1) ] 2

0

where X; = 2.405(b/a) and J,(X) is the nth order Bessel function
of the first kind. Slmﬂarly, the cutoff frequency of the dominant
TE. mode for 6= 90° is obtamed as

e 1 4 0.7925 (o[ X1 o (X2)J1 (X3) — J2(X2) ]

fo
+ 3 sin (2¢0) [J6?(X5) + Jo(Xa)J1 (X)) — 044]) (4)

where X, = 1.84(b/a). For 8 = 0° and 6 = 45°,

the normalized
cutoff frequencies of TE;; mode are, respectively, ‘

]{f = 1+ 0.7925 (4o X s (X2)J1(X) — Ji2(X2)]
— 38 (260) [Jo* (X3) + Jo(X2)J1(Xz) — 0.44]), (6 =10°) (5)
;0 1 + 0.7925 (o[ XoJo (X2)J1 (Xo) ~ J2(X2)]), (8 = 45°).
(6)

) In these expressions, the cutoff frequencies are i terms of the

sector parameters ¢o and (b/a). By using the relations (2), the
cutoff frequencies versus ridge radius (r/a) are calculated.

For ¢ = 0° the cutoff frequency of a TE; wave decreases with
increasing ridge radius 7. For @ = 90° and 6 = 45°, the converse is
~true. The cutoff frequency of TMgy mode also increases as r increases,
but is not a function of 8, because of its circular mode symmetry.
These results are plotted in Fig. 2. In a ridged circular waveguide,
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Fig. 2. Normalized cutoff frequency of ridged circular waveguide.

the cutoff frequency is decreased for the dominant TEy;; mode with
¢ = 0, and is increased for the next lowest cutoff TMy mode. There-
fore, the useful frequency bandwidth of a ridged circular wavegulde
18 wider than that of a smooth waveguide.

‘WAVEGUIDE ATTENUATION

The attenuation constant of a wavegulde is given by the followmg
expression [37]:

= Rsfw,izdz/z[f [E X H*]-ds. o)
‘ 8

In this expression, Eg is the surface resistance of the waveguide wall,
H; is the magnetic field tangential to the waveguide wall, and ¢ is
the periphery of the waveguide cross section. General solutlon of the
above expression in terms of Bessel functions is somewhat’ compli-
cated. However, for certain specific cases of interest, the result can
be evaluated individually. Assuming relations (2), the following
expressions are obtained for » = 0. 2la:

7.31 X 10-1°f”2] [ ! ] ®)
o = a (1 — (fe/H)2e
B [& [0.427 + 1.237(fc/f)2] ©)
Tz || T = (e

for # = 90° and

_ [& [0.452 + 1.046(fe/f>2]
R 7 | D

(10)

for & = 0°, where Zy = (uo/e0) V2

The attenuation factors as a function of frequency are shown in
Fig. 3 for TE;; wave with 6 = 0 and TM,; wave. The losses for these
two modes of a smooth waveguide are also plofted in Fig. 3 for
comparison. Radii of ridged and smooth circular waveguides denoted
by a and a, are, respectively, chosen to be ¢ = 2.54 cm and a, =
2.49 cm, so. that they have a same citoff frequency for the’ TMg
mode. As shown in Fig. 3, the ridged waveguide has a lower loss. for
the dominant TE;; mode than that of the smooth clrcular waveguide
in the normal operating frequency band.

In a ridged circular waveguide, wave attenuation also depends on
the orientation of the ridge-pair plane with respect to wave polariza-
tion. The attenuation is minimum when = 0° and becomes maxi-
mum when § = 90° This fact may explain why wave polarization
is most stable in the 6-= 0° orientation. The attenuation factors of
TEu waves versus frequency for these two orientations are plotted
1n Flg ‘4 for comparison.
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CoNcLUSION

The cutoff frequencies and attenuation of waves in a ridged cir-
cular waveguide are calculated. The results suggest that a ridged
cireylar waveguide has.a lTower loss and larger bandwidth than those
of a smooth cireular waveguide for the dominarit TE;, wave polarized
in ridge-pair plane in'the normal operating band.. Atfentuation of
TE;; wave in a ridged circular waveguide i minimum when the

" wave is polarized in the ridge-pair plane (6 = 0°) and i$ maximum
when. the wave i§ polarized normal to the ridge-pair plane (6 = 90°).

Conclusions reached here are drawn from the calculations of a
formulation based on perturbation theory. The results do not hold
for large 7/a, however. Since the exact field distribution within the
waveguide is unknown, error can only be estimated. For design
purposes, however, the error can be estimated for a fixed 7/a on the
basis of a comparison between (1) and the more exact solutions
[47, [5}for a rectangular waveguide with a same wall-deformation.
For.exaniple, the cutoff'frequency-shift based on (1) is calculated
in"a rectangular waveguide with a rectangular longitudinal ridge
attached in the 'H plane with dimensions corresponding to r/a’'=
0.275 in Fig. 2. The result is‘then compared to that of Cohn’s work
[4] and an error is obtained. If this same ‘error-is assumed for the
case -of rldged “circular guide, -then the cutoff fréquency-shift is
estimated to be within 0.65 percent for TEy mode and 0.77 percent
for TMy; mode. For a circular ridge which is the case in this-study,

the result is expected to be somewhat better, because of the smooth- -

ness of -the wall- boundary, although a .complete error:analysis for
the wide range of r/a in Flgs 2-4 has not been carrled out
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Magnetostatlc Surface Waves in Ferrite Slab Ad]acent to
Semconductor

MASAMITSU MASUDA, mEMBER, 18EE, NION 8. CHANG,
MEMBER, IEEE, AND YUKITO MATSUO

Abstract—Magnetostatic surface waves propagating along the
ferrite slab adjacent to a semiconductor are discussed in this paper.
Our numerical results indicate that the conductivity of the semi-
conductor plays an important role in the determination'of the dis-
persion relation in the case of nondrifting carriers. The backward
wave appears for a finite value of the conduct1v1ty

1. INnTRODTCTION

Magnetostatic modes propagating along a ferromagnetic.slab in
free space were first examined by Damon and Eshbach [1] (DE
waves). Applying a dc magnetic field transverse to the direction of
the wave propagation, the surface wave which corresponds to the
6 = 90° spin wave is excited. This wave is unique to the slab con-
figuration. Seshadri [2] considered the case where a metal conductor
was placed on one face of the slab. Such a grounded ferrite slab has
two different surface waves which propagate in opposite direction
to each other. Both surface waves are forward modes. Subsequently,
Bongianni [37 discussed magnetostatic waves in the dielectric-
layered structure where the dielectric matérial was between a YIG
film and a perfect conductor. A backward wave appears at some
value of the thickness of the dielectric layer. On the other hand, the
general theory of the surface wave on a metallized ferrite film, includ-
ing dipolar, exchange, and conductivity effects, has been treated by
Wolfram and DeWames [4].

Our interest is not only in the behavior of the magnetostatlc
waves but also in the wave interaction between the ferrite and the
semiconductor. It has been suggested that the solid-state traveling
wave amplifier (STWA) can be constructed with a layered structure
containing both materials [51-[7]. A detailed undetstanding of the
couphng of the spin wave in ferrite and the carrier wave in semiconduc-
tor is important for the design of STWA. Preliminary to a discussion
of the amplification process, we deal in the present paper with the
magnetostatic surface waves propagating along a ferrite slab adja-
cent to a semiconductor. The finite conductivity of the semiconductor
gives us remarkable changes to the properties of the surface waves.
The dispersion relationship can be obtained by solving the boundary
value problem for three regions of ferrlte, semiconductor, and free
space

II. ANALYSIS

The geometry treated in this paper is a layered structure con-
stitited by a ferrite slab and a semiconductor layer in free space, as
shown in Fig. 1. The external dc maguetic field is applied parallel
to.the y direction. The propagating directions of magnetostatic sur-
face waves and the carrier flow in the semiconductor are chosen to
be in the z direction. Our two-dimensional analysis is based on the
assumptions that the wave varies as exp j(ot — j2) and that all
properties are 1ndependent of y(8/9y = 0).

The field components in the semiconductor region, which is a
collision-dominated system for electrons, satisfy the following
equatlons

VX H = J + jooE (1)
VXE= — jouH 2
VXE=p/e 3)

J=P0V_+PV0 (4)
V=5a(E+VXB +V XB) (8)
we 0 0 7o

B= [0 w 0|, w=v/E u=0E
0 0
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